Automated Drowsiness Detection For Improved Driving Safety
نویسندگان
چکیده
Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy driving.
منابع مشابه
特集 Drowsiness Detection Using Facial Expression Features*
This paper presents the method of detecting driver’s drowsiness level from the facial expression. The motivation for this research is to realize the novel safety system which can detect the driver’s slight drowsiness and keep the driver awake while driving. The brain wave is commonly used as the drowsiness index. However, it is not suitable for the in-vehicle system since it is measured with se...
متن کاملDriver drowsiness detection based on non-intrusive metrics considering individual specifics.
OBJECTIVES Drowsy driving is a serious highway safety problem. If drivers could be warned before they became too drowsy to drive safely, some drowsiness-related crashes could be prevented. The presentation of timely warnings, however, depends on reliable detection. To date, the effectiveness of drowsiness detection methods has been limited by their failure to consider individual differences. Th...
متن کاملArm Based an Real Time Implementation Based on Transportation Systems
The main idea behind this project is to develop a system which can detect drowsiness of the driver and giving an indication in the form of alarm. Since a large number of road accidents occur due to the driver drowsiness, here we are proposing a new transportation system which will reduce the accidents. This system will monitor the driver’s eyes using camera and face detection which is very impo...
متن کاملReduction Effect of Traffic Accidents by Function of Drowsiness Detection
Drowsiness is thought as crucial risk factor which may result in severer traffic accidents. Recently driver’s psychosomatic state adaptive driving support safety function has been highlighted to further reduce the number of traffic accidents. Consequently, reduction effect of psychosomatic adaptive safety function should be clarified to foster its penetration into commercial market. This resear...
متن کاملطراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازشگر سیگنال TMS320C5509A
Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...
متن کامل